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continuous, and that it has a Lipschitz continuous selection. r[) 1994 Academic
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In this note it is shown that the L I metric projection onto a lattice
is Lipschitz continuous, and that it has a Lipschitz continuous selection.
Our results apply, in particular, to the theories of isotonic regression and
conditional medians given a a-algebra (the L 1 version of conditional
expectation), so this work may prove useful to probabilists as well as
approximation theorists.

The cornerstone of the existential theory of selections is Michael's
Selection Theorem [8], which says, in essence, that the set, H(X), of
closed, bounded, convex, nonempty subsets of a normed linear space X has
a continuous selection, i.e., a continuous choice function, 'P: H(X) -+ X.
Suppose X has infinite dimension. In this case it has been shown that there
can be no Lipschitz continuous choice function [11]. If % is a proximinal
subset of X, then the metric projection of X onto % has for its range a sub
set of H(X), and a selection restricted to this subset (and composed with
the metric projection) is called a metric selection. In [3], several charac
terizations were given of proximal subspaces which admit Lipschitz
continuous selections. The present note describes a class of such subspaces.

When dim(X) < 00, the Steiner point has been shown to be a Lipschitz
continuous selection [10]. However, Vitale [14] showed that the Steiner
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point cannot be extended continuously to all convex bodies in an infinite
dimensional space. The Steiner point is the only constructive approach to
the Lipschitz continuous selection problem known to the authors. On the
other hand, there is good news regarding the metric selection. Ubhaya [13]
described a large family of approximating subsets of L w each of which has
a distance-reducing metric selection. Ubhaya's selection is calculable via an
elementary characterization. The present study is primarily based in the
less-studied space, L I • Our family of approximating sets is similar to, but
less general than, Ubhaya's.

Now we will describe the context in which we are working. If (Q, s~, f-l)
is a measure space and 1~p < 00, let L p := L p (Q,.'4, f-l) consist of all f-l
measurable functionsf:Q~R such that Ilfllp:={JalfIP}I/p and let L xc

consist of all functions f: Q ~ R such that Ilfllen := sUPXEa I/(x)1 < 00. If
pE [1,00], xcLp , and/ELp, we say that g is a best Lp-approximant to
Ifrom X if gEX and

For each p E [0, 00], we define a set-valued function IJp by requiring that
for each IE L p, IJp(f) shall consist of all best Lp-approximants to I
from X. We call IJp the (II· lip) metric projection of L p onto X. Let
L := L( n Lx. Let IJ denote the restriction to L of IJI .

For the study of the continuity of IJ, we topologize its codomain using
the Hausdorff distance: If A and Bare nonempty subsets of a metric space
(M, d), let

Hd(A, B) := max {sup inf d(a, b), sup inf d(a, b)}.
aEA hER hEB aEA

If d is the metric induced by 11·111 (respectively, 11·11 x) we will denote H d by
HI (resp., H x )' In [7], Legg and Townsend gave an example to show that
Illn - III1 ~°does not always imply that Hd[J(fn), IJ(f)) ~ 0, but they
proved that, when Q = [0, 1], f-l is Lebesgue measure, and X consists of all
nondecreasing functions in L I , then, for every f, f' E L I , H xc ([J(f), [J(f'))
< 8 III- f' II x' We will now show that the Legg-Townsend theorem is true
in a much more general context, and that [J is, in fact, distance reducing,
i.e., the Lipschitz constant can be lowered from eight to one.

If {f.l: A. E A} c L p , let V.lEA/.l := SUP.lE AlA' and I\.lEA/.l := inf.lEA/.l' If
A = {l, 2}, we denote V.lE AI.l by II V 12, and I\hAI.l by II 1\12' We say
that a subset X of L p is a lattice (respectively, a (J-complete lattice) if
V.lEA/.l' I\.lEA/.l E X whenever {fA: AE A} E X and A is finite (resp., at
most countable). If Xc Lp and X + c = X for every c E R (i.e., .% is



NOTE 157

invariant under translation by constants), then it follows readily from the
definitions that flp is additive modulo the set of all constant functions, i.e.,

(1)

for every fEL p and cER. The following theorem states that the L 1 metric
projection is 11·11 ex Lipschitz continuous.

THEOREM 1. Suppose that % c L is an 1I·III-closed, a-complete lattice
which is invariant under translation by constants. Iff,I' E Lx, then

Hex (fl(f), fl(1')) ~ IIf- I'll ex'

Furthermore, the estimate is sharp.

Proof Let 1':= Ilf- I' II x' By Theorem 4 in [4], neither fl(f) nor
fl(f') is empty. Choose any hoE fl(f) and go E fl(I'). Since I' - I' <f<
I' + I' and fl(f' ± e) = fl(f') ± 1', Theorem 18 in [4] implies that both
gl:=[hol\(go-e)]+e and g2:=[ho v(go+e)]-e are elements of
fl(f'). Let g*:= gt v (ho-e). We claim that g*Efl(f'). Suppose not. Let
A:= [ho<go-e]:= {xED :ho(x)<go(x)-e}, B:= [go-e~ho~go+e],

and C:= [go + I' < hol Proposition 2.1.2 in [1] implies that each of A, B,
and C is in .~. Note that

III' - gill =I II' - gl +I II' - gl +f II' - gl
ABC

for every gE%. Since g* = gl on A v Band gJ Efl(f'), it must be that

f II'-g21=f II'-g*l>f II'-gd=f II'-gol·
C C C C

But g2 = go on A v B, so IiI' - g2111 > III' - golll' a contradiction. This
shows that g* E fl(f'). Clearly, II g* - holl ex ~ e. The construction of an
h* E fl(f) such that IIh* - goll (0 < e is symmetric.

To see that the estimate is sharp, choosefE% and let I' :=f+e. Then
fl(f)={f} and fl(f') = {j+e}, so H oc (fl(f),fl(f'))=e=llf-l'llx'
This concludes the proof of Theorem 1.

We now describe a context in which fl has a 11·llx -distance reducing
selection. Suppose that, in addition to the above assumptions, % is
11·llx -boundedly compact and J1 is finite. Then, for every p E (1, (0), % is
a II· lip-closed convex subset of the uniformly convex Banach space, L p , so
flp is single valued. In this case, for each fE L p , we will denote the single
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element of flp(f) by 1tp(f). In [5], it was shown that each fE L ro has a
distinguished best Lt-approximant, m t (f), from X" with the property

as p l1. (2)

The function m l (f) is called the natural best 11·111 approximant to f from
X", so we call the operator fl--+ m l (fIX") the natural selection. An internal
characterization of m l (f) was also given in [5], viz., cP(m l (f)) ~ cP(g),
g E fl(f), where cP(h) := f If- hi In If-hi·

THEOREM 2. Suppose that J1 is finite and X" c L oc is an II ·11 I-closed and
11·lloo-boundedly compact lattice which is invariant under translation by
constants. If f,f' E L oc , then

Ilm l (f) - m l (f')11 00 ~ Ilf- I'll OC'

Furthermore, the estimate is sharp.

Proof By (3ii) in [6], for any pE(I, 00) and u, vELp ,

whenever u ~ v. (3)

Since J1 is finite, L oo c Lp , so (1) and (3) imply that for any p E (1, 00) and
u,vEL oo ,

(4)

LetfEL oo and goEX" be fixed. By (4), II7l:p(f)lloo~llf-golloc+llgolloo,

i.e., the net {7l:p (f) : p E (1, 00 )} is uniformly bounded. Since X" is bound
edly compact, there exist Pnl1 and gEX" such that II/3nlloc.--+O, where
/3n := 7l:pn (f) - g. Since II /3nllt ~ J1(Q) II /3nll oc' (2) implies that g = m t (f) a.e.
By similar reasoning, given I' E L oo , the sequence {7l:p.(f')} is uniformly
bounded so it contains a subsequence {7l: q.(f')} which converges uniformly
to m l (f'). The triangle inequality, and (4), can now be used to establish
the estimate. That the estimate is sharp is shown exactly as in Theorem 1.
This concludes the proof of Theorem 2.

We conclude with a discussion of some contexts in which the above
theorems are applicable. Let fJI consist of the empty set and all sets of the
form {(a, 1], (a, 1] : 0 ~ a < 1}. Then fJI is a O"-lattice of subsets of [0, 1],
and the set, X", of all L oc functions measurable with respect to f!A satisfies
the hypotheses of Theorem 2. Bounded compactness follows from an
obvious extension of VIII. 4.2 in [9]. This set consists of all nondecreasing
functions on [0, 1], so our theory includes that of Legg and Townsend.
Approximation by nondecreasing functions is called isotonic regression by
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statisticians [12]. The continuity of the L oo metric projection onto this set
will be discussed in a subsequent publication.

Suppose % satisfies the hypothesis of one of our theorems. For
i= 1, 2, ..., n, let Q; be the set of ordered pairs {(x, i): xEQ}; let Q*:=
Q 1 UQ 2 u ... uQn; let d* consist of all sets of the form {(X,i):XE
A/Ed, i= 1, 2, ... ,n}; for A =A 1 uA 2 u .. ·AnEd*, let f-l*(A):=
L:7~ 1f-l{X : (x, i) E A;}; and let %* consist of all functions y: Q* --+ R such
that g(x, i) = g(x,j) for i"# j and the function h(x) :== g(x, i) is in %. Then
%* satisfies the hypothesis of our theorem (with (Q, d, f-l) =
(Q*,d*,f-l*». Iff" ...,fnEL, definef*:Q*--+R byf*(x,i)=fi(x). The
approximation of f* by elements of %* is equivalent to the simultaneous
approximation of f,,f2' ... ,fn by elements of %, using the "sum" norm. In
this norm, the measure of deviation of (f1,f2, ...,fn) from hE % is
L:7~ 1 IIf; - h III' (This example was our original motivation for the
consideration of lattices of functions.)

If fJI is a sub a-algebra of d and % consists of all functions in L, which
are measurable with respect to fJI, then, by Section 2.1 in [1], % satisfies
the hypothesis of Theorem 1. In this case, the elements of fl(f) are known
as conditional medians of f Darst [2] showed that f ac := limp ~ GO Ttp (f)
always exists, so an argument similar to that of Theorem 2 shows that
the operator fH f 00 is a distance-reducing metric selection. It would be
of interest to explore the relationship between this selection and that
described by Ubhaya [13].
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